Worker exposure to volatile organic compounds in the vehicle repair industry.
نویسندگان
چکیده
This study evaluated exposures among vehicle repair technicians to hexane, acetone, toluene, and total volatile organic compounds (VOCs). On randomly selected workdays, we observed a characteristic pattern of solvent use among 36 technicians employed in 10 repair shops, each of which used an aerosol solvent product. We obtained quantitative exposure measurements from a subset of nine technicians (employed in three of these shops) who used an aerosol product containing hexane (25-35%), acetone (45-55%), and toluene (5-10%). The time-weighted average (TWA) exposure concentration for task-length breathing zone (BZ) samples (n = 23) was 36 mg/m(3) for hexane, 50 mg/m(3) for acetone, and 10 mg/m(3) for toluene. The TWA area concentrations (n = 49) obtained contemporaneously with BZ samples ranged from 25% to 35% of the BZ concentrations. The solvent emission rate (grams emitted/task time) was correlated with the total VOC exposure concentration (R(2) = 0.45). The proportions of VOCs in the BZ samples were highly correlated (r = 0.89 to 0.95) and were similar to those of the bulk product. Continuous exposure measurements for total VOCs (n = 1238) during 26 tasks produced a mean BZ VOC "pulse" of 394 mg/m(3) within 1 min following initiation of solvent spraying. The geometric mean air speed was 5.2 meters/min in the work areas (n = 870) and was associated with 0.8 air changes per minute in the BZ. The findings suggest that vehicle repair technicians who use aerosol solvent products experience episodic, inhalation exposures to the VOCs contained in these products, and the proportions of VOCs in the breathing zone are similar to those of the bulk product. Because acetone appears to amplify the severity and duration of the neurotoxic effects of n-hexane, products formulated with both hexane and acetone should be avoided. Further evaluation of exposures to VOCs is needed in this industry, along with information on effective alternatives to aerosol solvent products.
منابع مشابه
Recent Advances in Microextraction Methods for Sampling and Analysis of Volatile Organic Compounds in Air: A Review
Human exposures to volatile organic compounds (VOCs) are associated with a wide range of health problems. Due to these adverse effects of VOCs on the human health, determination of trace levels of VOCs is very important for accurate assessment of indoor and outdoor exposure. Solid phase microextraction (SPME), needle trap device (NTD) and hollow fiber- liquid phase microextraction (HF-LPME) are...
متن کاملCancer Risk Assessment Benzene, Toluene, Ethylbenzene and Xylene (BTEX) in the Production of Insulation Bituminous
Benzene, Toluene, Ethyl Benzene and Xylene are volatile organic compounds (VOCs) with approximately similar physical and chemical characteristics. Benzene and Ethyl-benzene are known carcinogen as well as they affect the circulatory, nervous, and reproductive and respiratory systems. Toluene and Xylene also damage the nervous and reproductive systems. The main purpose of this study is to determ...
متن کاملEvaluating indoor exposure modeling alternatives for LCA: a case study in the vehicle repair industry.
We evaluated three exposure models with data obtained from measurements among workers who use "aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the (1) homogeneously mixed-one-box model, (2) multizone model, and (3) eddy-diffusion model. Temporally differentiated real...
متن کاملIdentification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology
Fungal volatile organic compounds (VOCs) have the potential of being used as biocontrol agents for biotechnological applications in agriculture, industry and medicine. In this research, different VOCs from secondary metabolites of biocontrol fungus Trichoderma virens (6011) KP671477 were separated using n-hexane, n-butanol and methanol solvents and identified by gas chromatography–mass spectrom...
متن کاملOccupational exposure to volatile organic compounds in the Portuguese printing industry
In the printing industry, volatile organic compounds main sources are the uses of organic solvents, fountain solutions and cleaning agents. Nowadays, one circumstance which might confuse the exposure reality is that the majority of solvents which are often used have a faint odour. Therefore, the conditions at offset printing in regard to solvent exposure may seem acceptable to workers. Fortunat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of occupational and environmental hygiene
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2007